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Abstract: Microplastics, as an emerging environmental contaminant, have attracted increasing
attention worldwide. Previous studies have addressed this environmental problem in either the
marine or continental environment, but ignored the water bodies in between. Coastal lakes are
transitional aquatic systems and may play an important role in transport, reworking and redistribution
of plastics across catchment scale. Here, we report results of our investigation of plastic pollution in
sediment of a coastal lake, the Dishui Lake, in Shanghai, China. The lake is located in coastal Shanghai
and connected to the East China Sea via a 7-km long canal. Sediment samples were collected from
around the lake and the canal. Plastic particles were detected in the sediment with various shapes,
colors and compositions. The total particle count in the canal sediment was orders of magnitude
higher than in the lake sediment. Polypropylene was the dominant polymer in the sediment. Our
results suggest that coastal lakes can serve as a reworking zone for accumulation and reworkings of
plastic particles, and a buffer zone contributing to plastic pollution in the marine environment. This
study addresses the most understudied area of plastic pollution, i.e., reworking and redistribution of
plastic debris at catchment scale across the marine and continental environment.

Keywords: microplastics; Dishui Lake; East China Sea; sediment; mesoplastics; macroplastics;
buffer zone

1. Introduction

Plastic is one of the most widely used materials in modern society. The production of plastics has
increased annually from 0.5 million tons in 1950 to 330 million tons in 2016 [1]. However, the legacy
has now become an intractable problem. The use and abuse of plastics caused serious white pollution
worldwide [2,3]. According to the ministerial declaration adopted by the United Nations Environment
Assembly, plastic waste entering the ocean from land sources was 4.8–12.7 metric tons annually in
2017 [4]. Plastics, as a new type of emerging contaminant in the marine environment, have attracted
ever-increasing attention of the scientific community, environmental policy makers, and the society as
a whole [5].

Plastics can be divided to micro-, meso- and macroplastics with diameter, respectively, <5, 5–20
and >20 mm [6,7]. Because of their large specific surface area, it is easy for plastics to adsorb chemical
contaminants in water, such as persistent organic pollutants (POPs), metals, etc., and play an important
role in contaminant transport across ecosystems [8,9]. Thus, the combined toxicity of plastic particles
and the absorbed pollutants is currently a hot research topic [10–14]. Meanwhile, the environmentally
harmful additives like plasticizers, UV stabilizers, flame retardant, etc., which are added to improve
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plastic properties, would release to the environment [15–18]. Furthermore, plastic particles could
migrate in the food chain [19]. Thus, plastics can act as a powerful carrier for the transport of chemical
contaminants in the environment through the food chain and eventually reach the human body [20–24].
Plastic particles, especially micoplastics, are now found almost everywhere worldwide, from the polar
regions to the deepest part of the ocean—the Challenger Deep of the Mariana Trench [25–30], and even
in the air that we breathe [31].

At present, most of the research has focused on marine microplastic pollution. In fact,
anthropogenic stress, including plastic pollution, has also caused huge irreversible changes in
rivers [32]. Research on plastics in continental environments is increasing in recent years [33]. However,
most of those studies are directed on large water bodies. Eriksen et al. (2013) studied plastics in
the Great Lakes of the United States and found that lake water had a very high concentration of
microplastics (average concentration of 43,000 particles per km−2), and lakes in densely populated
areas contained higher concentrations of microplastics than in remote areas [34]. Urban rivers, such as
the Danube River [35] and the Rhine River [36], had plastics pollution in varying degrees. Furthermore,
inland rivers with sparse population density, such as the Qinghai-Tibet Plateau (China), cannot avoid
plastic intrusion [37]. The distribution of plastics in inland rivers and lakes is inseparable from
the development of urbanization, from sewage discharge, surface runoff, littering, and atmospheric
deposition [38,39].

Although results of these past studies have increased our understanding of microplastics in the
marine and continental environments, knowledge gaps remain as to the role of aquatic systems in the
transitional zone between the two environments, in the accumulation, reworking, redistribution, and
transport of plastics to the marine environment. Currently, there is limited understanding on fate and
behavior of plastic particles across the freshwater-saltwater bodies and their potential contribution
of plastic debris to the marine environment. We hypothesize that coastal lakes, located between and
connected with the continental and marine environments, can act as a buffer zone in reprocessing and
redistribution of plastic particles at catchment scale across ecosystems. In this study, we sampled a
coastal lake in southeast Shanghai—the Dishui Lake. The lake is an ideal aquatic system to test our
hypothesis as it is located in coastal Shanghai, with the Dazhi River emptying into it on the north and
the Chifenggang Canal on the south, connecting the lake and East China Sea (ECS). We determined
the abundance and characteristics of plastics in surface sediment of the lake and the canal. The lake
as a source, a sink, and a buffer zone for reworking and redistribution of all three sizes of plastics
is discussed.

2. Methods

2.1. Sampling Area

The Dishui Lake is located in the southeast corner of Shanghai, China (Figure 1). It is the central
lake of the Nanhui New Town, a population center in the area. The lake plays an important role
in the development of this area [40]. The lake is an artificial lake, connected to the East China Sea
(ECS) by a 7-km canal, the Chifenggang Canal. This canal is cut off from the East China Sea by the
Nanhuizui Gate, which is regularly opened to release lake water into the East China Sea. The lake
has a total area of about 5.56 km2 and a water storage capacity of approximately 16.2 million m3

(https://baike.so.com/doc/5337898-5573337.html). The Dazhi River, a tributary of the Huangpu River
which runs through the center of Shanghai, discharges into the lake in the north (Figure 1). The lake
is 2.6 km in diameter and has a maximum depth of approximately 6.2 m. At present, the southwest
side of the lake is more populated than the other sides, which are either cultivated areas or under
urban constructions.

https://baike.so.com/doc/5337898-5573337.html
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For floatation, we first prepared a saturated solution of sodium chloride (NaCl, Sangon Biotech, 
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Figure 1. Map showing sampling sites in the Dishui Lake.

2.2. Sampling Sites and Methods

Fourteen sediment samples were collected in March and May 2019, at sites in the southwest
side, the north side where the Dazhi River empties into the lake, and the southeast side along the
Chifenggang canal which connects the lake to the ECS (Figure 1). At each site, the top 1–2 cm of
sediment was collected, carefully wrapped with aluminum foil, and kept in polyethylene bags. The
aluminum foil was pre-combusted in a muffle furnace at 450 ◦C for 4 h. All samples were taken to the
lab and stored at −20 ◦C until analysis.

2.3. Density Separation of Plastic Particles

The method of extracting plastic particles from the sediment was adopted from Thompson et al.
(2004) [6] with modifications. The sediment samples were first dried using a freeze-dryer. Then the
dried sediment samples were poured into a porcelain mortar and mixed with a pestle. About 100 g
of each sample were taken and passed through a 10-mesh metal sieve to remove mesoplastics and
macroplastics for separate analysis. The sieved sediment was used for extracting microplastic particles
as described below.

At the present, the common practice is to digest sediment samples to remove organic matter
before extracting microplastics. Sediment is typically treated with acids (HNO3, HCl, HNO3, HClO4)
or hydrogen peroxide (H2O2, 30%). According to previous studies, these treatments could cause plastic
fading and digestion and may underestimate the abundance of plastics [41,42]. Therefore, we utilized
a floatation method for extracting plastics from the sediment. However, it must be noticed that certain
plastics with a density higher than that of the saturated NaCl solution would hardly be suspended and
extracted by this method.

For floatation, we first prepared a saturated solution of sodium chloride (NaCl, Sangon Biotech,
China). The saturated NaCl solution was filtered through a glass fiber filter. The solution (1.2 g mL−1)
was poured into beakers that contained sediments and then stirred manually with a clean glass rod
for 2 min. The volume of the floatation solution was more than 3 times that of the sediment. The
mixture was allowed to stand for 24 h at room temperature on a super clean bench. The supernatant
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was transferred to a beaker (pre-combusted at 450 ◦C for 4 h). This procedure was repeated 3 times.
Eventually, the supernatant collected was filtered through a Whatman GF/A filter under vacuum. The
microplastics retained on the filters were collected.

2.4. Identification of Plastics

Plastic particles retained on filters were observed by a microscope (Nikon, SMZ25/SMZ18, Tokyo,
Japan). Each filter was observed at least 3 times. Microplastic items were identified based on size, color,
and shape, and recorded. Some relatively large microplastics (>1 mm) can be distinguished [43] if (1)
no visible cellular or organic structures were seen on the microplastics, (2) the entire fiber had equal
thickness, and (3) the particles had clear and homogeneous colors.

All plastic particles were photographed by a microscope and then classified by size, color, and
shape. The composition and polymer type of all collected particles including micro-, meso- and
macroplastic were identified by a Fourier Transform Infrared Spectrometer (FT-IR, Thermo Fisher
NicoletTM InTM10, Madison, WI, USA) and the transmission mode was used. The test result with more
than 70% confidence matching with the FT-IR library was considered to be a plastic polymer [44].

2.5. Quality Assurance and Control

The sample-takers wore cotton clothes when they were taking samples from the lake. Plastic
tools were avoided during experiments. The glass containers and glass fiber filters were combusted at
450 ◦C for 4 h prior to use. All the liquids, including nanopure water and the prepared NaCl solutions,
were filtered before use (Whatman GF/A, ϕ = 1.6 µm). All the tools that could not be pre-combusted
at 450 ◦C were rinsed three times with filtered nanopure water. A blank control was set in every batch
of samples (5 samples per batch). All experiments were performed on a clean bench.

3. Results

3.1. Composition, Abundance, and Distribution of Microplastics in the Lake Sediment

No plastic particles were found in procedure blanks, suggesting that the detected plastic debris
were all from the sediment samples. Microplastics were found at all sites except at sites DSL-9, DSL-11,
DSL-12, D-1, and D-3. The abundance and distribution of microplastics is shown in Figure 2. The
sampling sites were grouped as around the lake sites (ALS, 11 sites) and the canal sites (TCS, 3 sites).
Average microplastic concentration at the TCS sites (230 items kg−1 d.w.s., dry weight sediment) was
much higher than at the ALS sites (46 items kg−1 d.w.s.). The three ALS sampling sites (DSL-1, DSL-3,
DSL-5) close to the populated towns on the west of the lake had higher concentrations of microplastics
than sites on the eastern and northern sides of the lake. Site D-2, located close to a power supply
control center on the north side of the lake, had the highest level among all the ALS sites, 221 items
kg−1 d.w.s. At the TCS sites, the highest concentration was detected at site DSL-13 in the middle of the
canal, 340 items kg−1 d.w.s., followed by site NHZ at the junction point between the canal and ECS,
280 items kg−1 d.w.s.

The physical characteristics of the microplastics are shown in Figure 3. The color, shape, and
its composition are important factors in pinpointing the source of the plastic. Among the detected
microplastic debris, white microplastics accounted for the majority (54%), followed by blue (30%)
and green pieces (13%). In addition, small amounts of yellow (2%) and orange (1%) pieces were also
detected in the sediments. Line microplastics (22%) were most widely distributed, in all 10 sampling
sites except site D-2. Some of the line microplastics can be identified as fishing line. However, the
highest concentration was observed for sheet microplastics (53%), particularly DSL-13 and site D-2.
The foam microplastics (12%) ranked third, and then pellet (8%) and film microplastics (5%). For size
distribution, microplastics in the Dishui Lake were mostly in the range of 1–5 mm, 91%. Particles in
sizes between 0.1–0.5 mm and 0.5–1 mm accounted for 3% and 6%, respectively.
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The microplastic particles were further examined by FT-IR to determine their composition and
polymer type. A total of seven polymer types were identified in the Dishui Lake sediment, including
polypropylene (PP), polystyrene (PS), polyethylene (PE), acrylic, high density polyethylene (HDPE),
low density polyethylene (LDPE), acrylonitrile, acrylonitrile butadiene styrene (ABS), and polyethylene
terephthalate (PET) (Figure 3d). PP was the most abundant polymer type (69%). PP microplastics
in Dishui Lake sediment had various shapes, including sheets, pellets, and lines. The second most
abundant polymer type was PS (12%), all of which were foam fragments. The PE microplastic account
for 8% of the total, then LDPE and HDPE, which were 5% and 2%. PE microplastics were mainly films.
HDPE and LDPE were mainly pellet shaped.

3.2. Mesoplastics and Macroplastics in Dishui Lake Sediment

In addition to microplastics, we also detected mesoplastics and macroplastics in the lake sediment
(Figure 2b). The highest concentration of large plastic debris was detected at DSL-6, followed by
D-2, NHZ, DSL-13, DSL-10, and D-3. In most of the sites, not all three sizes of plastics were detected
concurrently. It is interesting to note that the concentrations of the plastics followed the sizes of the
particles; that is, microplastics were the most abundant, followed by mesoplastics and macroplastics. It
is also important to note that the polymer type, color, and shape of the large sized particles was similar
to that of the smaller sized particles found in the sediments.

4. Discussion

4.1. Sources of Microplastics in Dishui Lake Sediment

The Dishui Lake is surrounded by developing towns. Previous studies have shown that urban
rivers, hyporheic zone of rivers, the river bed, and inland lakes accumulated large amounts of
microplastics, such as the Beijiang River (China), River Rhine, and the Main River (Germany), rivers in
Northern England, and Lake Winnipeg (Canada) [33,45–48]. Our results showed that the distribution
of microplastics in the Dishui Lake sediment is affected by human activities. The sampling sites on
the north side of the lake (DSL-1, DSL-3, DSL-5), which is relatively densely populated, had higher
concentrations of microplastics than the eastern side, which is mostly farmland (DSL-9, DSL-10, DSL-11,
DSL-12, D-1). This conclusion is also supported by the elevated concentrations of microplastics
detected at site D-2. This sampling site is close to a power supply control center, where various
anthropogenic activities take place daily, such as inspection and repair work. Our finding is consistent
with observations in previous studies. Eriksen et al. (2013) found that, among the five Great Lakes, Lake
Erie, which is near the most populated cities, had consistently higher amounts of microplastics than
Lake Superior and Lake Huron [34]. Xiong et al. (2019) showed evidence that human activities affect
the abundance of microplastics in the middle and lower reaches of the Yangtze River [49]. Similarly,
a recent study by Peng et al. (2018) indicated that population density and quantities of industrial
waste were important sources for plastic accumulation in fluvial sediment [44]. The concentration of
microplastics in lakes of Wuhan also exhibited a decreasing trend away from urban centers [50].

Microplastics in the environment come from two main sources—the primary source and the
secondary source. The primary source refers to those that directly contribute plastics to the environment,
such as urban rubbish, industrial waste, and fishing waste, etc. [51–53]. Once released into the
environment, macroplastic, mesoplastics, and microplastics can be fragmented into smaller pieces
under the effects of physical, chemical, and biological processes [38,54,55]. These constitute the
secondary source of microplastics in the environment. In previous studies, line or fiber microplastics
were found to be important plastic components in rivers and coastal waters and were suspected to
come from laundering [56,57]. Our results showed that sheet microplastics were the most abundant
microplastics in the Dishui Lake sediment, suggesting that laundry wastewater discharging was
not the main source. In addition, we found that PP microplastics were the most abundant type of
microplastics. PP is widely used in woven products, food packaging, and pipes. The detection of PS
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foams in the Dishui Lake sediment further suggests that food packaging plastic material is likely the
primary source of plastic particles in the lake. It is interesting to note that macroplastics, mesoplastics,
and microplastics all exhibited similar characteristics in color, shape, and polymer type, suggesting
that the different sizes of plastic particles found in the lake sediment were from the same sources.

4.2. Coastal Lakes as a Buffer Zone between the Continental and Marine Environment

Coastal lakes, commonly connected directly with the ocean and also having water discharged from
inland rivers, can serve as a repository and reworking zone for plastics sourced from the continental
environment. Thus, plastic debris from the drainage area of rivers can be transported to coastal lakes
and reprocessed there. The Dishui Lake is a typifying example of this type of lake. The lake connects
with the East China Sea via a canal on the southeast. The Dazhi River, a tributary of the Huangpu
River which runs through the center of Shanghai, enters the lake on the north. We call such lakes as
buffer zones for plastics (PBZ), which can act as a sink for plastics from the continental environment
and, at the same time, as a source contributing plastics to the marine environment. Specifically, coastal
lakes like the Dishui can serve as a reworking zone for plastics entering them, which can be further
fragmented by physical, chemical and biological processes [55,58]. Plastics entering such lakes can be
from direct sources, i.e., human activities around the lake, or from indirect sources, e.g., by riverine
transport from continental environment.

Recent studies have shown that size distribution of plastic debris can be used to indicate the
source and transport pathways [59]. The average abundance at ALS and TCS sites were, respectively,
47.1 and 230 items kg−1 d.w.s. The concentrations of microplastics in the canal sites DSL-13 and NHZ
are orders of magnitude higher than that at the lake sites (DSL-6, DSL-10 and D-2). At the ALS sites,
microplastics accounted for 86.8% of all size plastics. However, the ratio at the TCS sites was 93.0%.
This indicated that plastics were more severely fragmented in the canal than in the lake. Combining
the fact that the Nanhuizui gate is periodically opened to release water to the ESC, we infer that during
the closing of the Nanhuizui gate, the plastic debris entering the lake are broken into smaller pieces by
physical, chemical, and biological processes. Our observations suggest that Dishui Lake served as a
PBZ, contributing plastic particles to the Eastern China Sea.

5. Conclusions & Perspectives

In this study we examined the composition, abundance, and distribution of macro-, meso-, and
microplastics in sediment of a coastal lake, the Dishui Lake in Shanghai, China and of the canal
connecting the lake to the East China Sea. Our results show that human activities are a major
contributing factor to the accumulation of plastic debris in the lake. Our results further suggest that
coastal lakes, exemplified by the Dishui Lake, can be a reworking zone for plastics derived from
continental sources, and a buffer zone contributing plastic debris to the marine environment. This study
addressed one of the most understudied research areas on plastic pollution in the environment—that is,
studying transport, reworking, and redistribution of plastic debris at catchment scale across the marine
and continental environment. It is important and useful for future research to focus on the sources,
sinks, reworking, and redistribution of all three sizes of plastics at catchment scale, both in the surface
water bodies and in groundwater [33,38,60]. We hope that our study will stimulate more hypotheses in
future research to determine the extent and potential impact of coastal transitional aquatic ecosystems
in transport and the reworking and redistribution of plastic particles across ecosystems. Furthermore,
studying the dynamic interactions between plastic particles and water/sediment in coastal lakes affected
by properties of plastics (size, shape, density, and surface properties) and the hydrodynamic conditions
of the water bodies is another field that needs to be expanded to understand the fate and transport of
plastics across the ecosystems.
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