方家松

发布日期:2020-04-11

已被查看了:208

诚招有志者来我实验室读研,

攀登海洋微生物学和生物地球化学高峰!

方家松 

特聘教授    

上海深渊科学与工程技术研究中心主任

邮箱: jsfang@shou.edu.cn

主要研究领域为深海和深部生物圈嗜高压微生物和细菌芽孢的地质微生物学、微生物海洋学和生物地球化学,研究手段包括传统的以实验室分离培养为基础的研究方法和非传统的分子微生物学、生物标志化合物和稳定同位素方法。方家松长期从事深海嗜高压微生物生态学和海洋碳循环研究,形成了系统的结合微生物学、生态学、酶学和海洋化学的创造性学术成果,建立了微生物(尤其是深海嗜高压微生物)介导的海洋碳循环模型:“海洋碳-菌链”(POM-DOM-Piezophilic Microorganism Continuum; PDPMC)。这个模型为研究海洋碳循环动力学过程(mechanistic processes)提供了一个指导性框架,为预测全球变化下的海洋碳循环动力学提供了理论基础。

教育经历

Ph.D., Oceanography,Texas A&M University, College Station, TX, USA

M.S., Organic Geochemistry,Louisiana State Universirt, Baton Rouge, LA, USA

B.S., Organic Geochemistry, Yangtze University, Hubei, China

Postdoc Research Fellow, Microbiology,Miami University, Oxford, OH, USA


在研科研项目

(1)首席科学家,国家重点研发计划---科技部深渊生物专项,1853万元,2018.08-2021.12

(2)主持,国家自然科学基金委重点项目---微生物驱动的深海碳循环机制和生态过程研究,300万元,2020.01-2023.12

(3)主持,国家自然科学基金委重点项目---革兰氏阳性产芽孢细菌芽孢化和芽孢活化的定量分析及碳同位素分馏研究


学术任职

Associate Editor Deep-Sea Research I (2014 – Present)

Associate Editor Groundwater (2013 – 2019)

Associate Editor Frontiers in Marine Science (2017 – Present)

Guest Editor PLOS ONE “Life in Extreme Environments” and PLOS Biology

Editor and Board Books Board, American Geophysical Union GeoPress (2010–2012)


远海航次和载人深潜

7/17-9/15/2016Chief Scientist, The New Britain Trench cruise, R/V Zhang Jian

1/26-3/30/2014Shore-based scientist, IODP Expedition 349, Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic

7/22-9/21/2012Shore-based scientist, IODP Expedition 337, Deep Coalbed Biosphere off Shimokita, Microbial processes and hydrocarbon systemassociated with deeply buried coalbed in the ocean.

6/10 – 6/19, 2005Yokosuka/Shinkai 6500 Nankai Bio-Symbiont Cruise to the Nankai Trough.

5/19 – 5/29, 1992DSRV Alvin Gulf of Mexico hydrocarbon seep cruise.Dive #3131, GB 386 (Gulf of Mexico), 1,921 ft; Dive #3137, GC 272 (Gulf of Mexico), 2,349 ft.

8/19 – 8/27, 1992Johnson Sea-Link I Gulf of Mexico hydrocarbon seep cruise.

9/12 – 9/19, 1991Johnson Sea-Link I Gulf of Mexico hydrocarbon seep cruise.

2/26 – 3/12, 1991R/V Gyre Gulf of Mexico core ring cruise.


国际学术活动

Co-ConvenerMicrobial Signatures and Processes in Modern and Ancient Settings from Surface Environments to the Hadal Realm and the Deep Biosphere. The 2020 Goldschmidt Conference, Honolulu, Hawaii.

Co-ConvenerSession 10a: Geomicrobiology and geobiological signals in the deep biosphere, Earth and beyond. The 2018 Goldschmidt Conference, Boston, Massachusetts, August 13-18, 2018.

Co-ConvenerSession 10b: Exploring the hadal zone: recent advances in hadal science and technology. The 2017 Goldschmidt Conference, Paris, France, August 13-18, 2017.

Conference ChairThe First International Summit on Hadal Zone Exploration: Challenges and Opportunities, June 10-11, 2016. Shanghai, China.

Co-Convener American Geophysical Union Biogeosciences Session B020 –Deep biosphere research: presence, diversity and activity of microbes. December 9-13, 2013, San Francisco, CA.

Co-ConvenerAmerican Geophysical Union Biogeosciences Session B54 – Current Applications of Phospholipid Analyses across the Biogeosciences, December 14-19, 2008, San Francisco, CA.

Co-ConvenerThe 3rd International Symposium on Persistent Toxic Substances in the environment, November 18-21, 2007, Beijing, China.

Session ChairAmerican Geophysical Union Biogeoscience Special Session BO5: Polyunsaturated fatty acids: planktonic input or bacterial origin? December 13-17, 1999, San Francisco, CA.

MemberAmerican Geophysical Union Biogeosciences Focus Group Committee (2005-)


最近媒体采访

Scientific American interview on paper published in American Geophysical Letters “Penetration of Bomb 14C Into the Deepest Ocean Trench”. May 15, 2019.


文章发表 PEER-REVIEWED PUBLICATIONS [* denote corresponding author]

  1. Li, J., L., Su, M. Sun, Q. Li, H. Zhou, J. Fang*, 2020. Elucidating the biomineralization of low-temperature hydrothermal precipitates with varying Fe, Si contents: Indication from ultrastructure and microbiological analyses. Deep–Sea Research I 157, 103208

  2. Yan, F., J Fang, J Cao, Y Wei, R Liu, L Wang, Z Xie.2020. Halomonas piezotolerans sp. nov., a multiple-stress-tolerant bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Int J Syst Evol Microbiol, doi.org/10.1099/ijsem.0.004069.

  3. Liu, Y., J. Fang*, Z., Jia, S. Chen, L. Zhang, W. Cao, 2020. DNA stable-isotope probing reveals potential key players for microbial decomposition and degradation of diatom-derived marine particulate matter. MicrobiologyOpen, DOI: 10.1002/mbo3.1013.

  4. Liu, Y., J. Fang*, 2020. Coastal Lakes as a Bu_er Zone for the Accumulation and Redistribution of Plastic Particles from Continental to Marine Environment: A Case Study of the Dishui Lake in Shanghai, China. Applied Sciences 10, 1974; doi:10.3390/app10061974.

  5. Wei, Y.,Wang, K.,Pei, J., Zhang, Y., Fang, J., 2019. Confluentibacter sediminis sp. nov., isolated from the junction between the ocean and a freshwater lake and emended description of the genus Confluentibacter. Int J Syst Evol Microbiol, doi.org/10.1099/ijsem.0.003665.

  6. Wei, Y., Cao, J., Mao, M., Pei, J., Liu, R., Fang, J., 2019. Marinomonas shanghaiensis sp. nov., isolated from the junction between an ocean and a freshwater lake. Int J Syst Evol Microbiol., 69: 805-810.

  7. Wei, Y., Cao, J., Yao, H., Mao, H., Zhu, K., Li, M., Liu, R., Fang, J., 2019. Paracoccus sediminilitoris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 69: 1035-1040.

  8. Wei, Y., Mao, M., Wang, K., Yao, H., Zhang, Y., Cao, J., Xie, Z., Fang, J., 2019. Algoriphagus litoralis sp. nov., isolated from the junction between the ocean and a freshwater lake. Antonie van Leeuwenhoek 112: 1545-1552.

  9. Cao, J., Liu, P., Liu, R., Su, H., Wei, Y., Liu, R., and Fang, J., 2019. Marinobacter profundi sp. nov., a slightly halophilic bacterium isolated from a deep-sea sediment sample of the New Britain Trench, Antonie van Leeuwenhoek 112: 425-34.

  10. Cao, J., Ding, W., Lai, Q., Wei, Y., Liu, R., Wang, L., and Fang, J., 2019. Alteromonas indica Lin et al. 2018 is a later heterotypic synonym of Salinimonas sediminis Cao et al. 2018, International Journal of Systematic and Evolutionary Microbiology 69: 1423-25.

  11. Cao, J., Ding, W., Lai, Q., Wei, Y., Liu, R., Wang, L., and Fang, J., 2019. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench, International Journal of Systematic and Evolutionary Microbiology 68: 3766-71.

  12. Liu, P., Ding, W., Lai, Q., Liu, R., Wei, Y., Wang, L., Xie, Z., Cao, J., and Fang, J. 2019. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. MicrobiologyOpen. DOI: 10.1002/mbo3.966.

  13. Cao, J., Wei, Y., Lai, Q., Wu, Y., Deng, J., Li, J., Liu, R., Wang L., and Fang J., 2019. Georhizobium profundi gen. nov., a piezotolerant bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Int J Syst Evol Microbiol.. DOI: 10.1099/ijsem.0.003766.

  14. Wang, N., Shen, S., Sun, W., Ding, P., Zhu, S., Yi, W., Yu, Z., Sha, Z., Mi, M., He, L., Fang*, J., Liu, K., Xu, X., Druffel, E., 2019. Penetration of Bomb 14C into the Deepest Ocean Trench. Geophys. Res. Lett. DOI:10.1029/2018GL081514.

  15. Fang*, J., Dasgupta, S., Zhang, L., and Zhao, W., 2019. Lipid biomarkers in geomicrobiology: analytical techniques and applications. In: Analytical Geomicrobiology, A Handbook of Instrumental Techniques, ed. by Janice P. Kenney, Harish Veeramani, Daniel S. Alessi, Cambridge University Press. P. 341-359.

  16. Jamieson, A.J., Fang, J., and Cui, W., 2018. Exploring the hadal zone: recent advances in hadal science and technology. Deep-Sea Research II 155, 1-3.

  17. Cao, J., Lai, Q., Liu, P., Wei, Y., Wang, L., Liu R., and Fang*, J., 2018. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol. 68(12): 3766-3771.

  18. 方家松、李江燕、张利,2018. 海底CORK观测30年: 发展、应用与展望。地球科学进展32, 121297-1306.

  19. 方家松、许元棋、李江燕、张利,2018. 深海站探和海底观测50年。大洋站探50年,中国大洋发现计划办公室、同济大学海洋地质国家重点实验室编著,同济大学出版社。

  20. 赵伟强, 方家松, 黄咸雨等. 生长压力对Bacillus subtilis 磷脂脂肪酸同位素分馏的[J]. 上海海洋大学学报, 2018, 27(6).

  21. Wei Y., Cao, J., Mao, H., Zhu, K., Li, M., Liu, R., Fang* J. 2018. Paracoccus sediminilitoris sp. nov., isolated from a tidal flat on the East China Sea. Int J Syst Evol Microbiol. 69(4): 1035-1040

  22. Wei Y., Cao, J., Mao, H., Liu, R., Fang,* J. 2018. Marinomonas shanghaiensis sp. nov., isolated from the junction between the ocean and a freshwater lake. Int J Syst Evol Microbiol. 69(3): 805-810.

  23. Guan, H., Chen, L., Luo, M., Liu, L., Mao, S., Ge, H., Zhang, M., Fang*, J., Chen, D. 2018. Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench.  Geoscience Frontiers 10, 351-360.

  24. Wei, Y., Fang*, J., Xu, Y., Zhao, W., and Cao, J., 2018. Corynebacterium hadale sp. nov. isolated from Hadopelagic Water of the New Britain Trench. Int’ J. Systematic and Evolutionary Microbiology 68(5): 1474-1478.

  25. Wei, Y., Zou, W., Mao, H., Fang*, J., and Blom, j., 2018. Pseudomonas abyssi sp. nov. isolated from the Abyssopelagic Water of the Mariana Trench. Int’ J. Systematic and Evolutionary Microbiology. 68(8): 2462-2467.

  26. Liu, R., Wang, L., Liu, Q., Wang, X., Li, Z., Fang*, J., Zhang, L., and Luo, M., 2018. Depth-resolved Distribution of Particle-attached and Free-living Bacterial Communities in the Water Column of the New Britain Trench. Frontiers in Microbiology. doi: 10.3389/fmicb.2018.00625.

  27. Liu, Q., Fang*, J., Li, J., Zhang, L., Xie, B.-B., Chen, X.-L., and Zhang, Y.-Z., 2018. Depth-resolved variations of cultivable bacteria and their extracellular enzymes in the water column of the New Britain Trench. Frontiers in Microbiology, doi: 10.3389/fmicb.2018.00135.

  28. Fang, J., Li, J., and Zhang, L., 2018. The 30 Years of Seafloor CORK Borehole Observatories: Development, Applications and Future Perspectives. Advances in Earth Sciences, 32.

  29. Xu, Y., Ge, H., and Fang*, J., 2018. Biogeochemistry of the hadal trenches: recent developments and Future perspectives, Deep Sea Research II 155, 19-26.

  30. Cao, J., Birien, T., Gayet, N., Huang, Z., Shao, Z., Jebbar, M., and Alain, K., 2017. Desulfurobacterium indicum sp. nov., a thermophilic sulfur-reducing bacterium from the Indian Ocean. Int J Syst Evol Microbiol 67, 1665-1668. DOI: 10.1099/ijsem.0.001837.

  31. Liu, R., Wang, L., Wei, Y., Fang*, J., 2017. The hadal biosphere: recent insights and new directions. Deep-Sea Research II, doi.org/10.1016/j.dsr2.2017.04.015.

  32. Fang*, J., Kato, C., Runko, G. M., Nogi, Y., Hori, T., Li, J., Morono, Y., Inagaki, F., 2017. Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from ~1.5 to 2.4 km-deep coal-bearing sediments below the ocean floor. Frontiers in Microbiology, 8:137. doi: 10.3389/fmicb.2017.00137.

  33. Dasgupta, D., and Fang*, J., 2017. Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans. Biologia 71, 843-852, 72/5: 586.

  34. Wei Y., Cao J, Fang* J, Kato C, Cui W. 2017. First complete genome sequence of Marinilactibacillus piezotoleransstrain 15R, a marine lactobacillus isolated from coal-bearing sediment 2.0 kilometers below the seafloor, determined by PacBio single-molecule real-time technology. Genome Announcement5, e01625-16. https://doi.org/10.1128/genomeA.01625-16

  35. Wei, Y., Cao, J., Fang*, J., Kato, C.,Cui, W., 2017. Complete Genome Sequence of Bacillussubtilis strain 29R7-12, a Piezotolerant Bacterium Isolated from Coal-Bearing Sediment 2.4 km Below the Seafloor. Genome Announcement5, e01621-16.

  36. Liu, Q., Li, J., Wei, B., Zhang, X., Zhang, L., Zhang, Y., and Fang*, J., 2016. Leeuwenhoekiella nanhaiensis sp. nov., isolated from the deep-sea water of the South China Sea. International Journal of Systematic and Evolutionary Microbiology66, 1352-1357.

  37. Li, J., Zhou, H., Fang*, J., Wu, Z., Peng, X., 2016. Microbial distribution in a hydrothermal plume of the Southwestern Indian Ridge. Geomicrobiology J., 33, 401-415.

  38. Li, J., Wei, B., Wang, J., Liu, Y., Dasgupta, S., Zhang, L., Fang*, J., 2015. Variation in abundance and community structure of particle-attached and free-living bacteria in the South China Sea. Deep-Sea Research II122, 64-73.

  39. Kim, S.-H., Tian, Q., Fang, J., and Sung, S., 2015. Removal of 17-β estradiol in water by sonolysis. International Biodeterioration & Biodegradation, 102, 11–14.

  40. Wei, B., Li, J., Zhang, L., Liu, Y., Fang*, J., 2015. The 234Th:238U disequilibria and their applications in studying marine particulates dynamics. Marine Geology Frontiers 31, 1-9.

  41. Fang*, J., Zhang, L., Li, J., Kato, C., Zhang, Y., Tamburini, C., Wang, G., Wang, F., and Dang, H., 2015. The POM-DOM piezophilic microorganism continuum (PDPMC) – the role of piezophilic microorganisms in the global ocean carbon cycle. Science China (Earth Sciences) 57, 1-10.

  42. Nilsen, F., Hyrenbach, K.D., Fang, J., and Jensen, B., 2014. Use of indicator chemicals to characterize the plastic fragments ingested by Laysan albatross. Marine Pollution Bulletin87, 230–236.

  43. Li, J., Zhou, H., Fang*, J., Sun, Y., and Dasgupta, S., 2014. Microbial distribution in different spatial positions within the walls of a black sulfide hydrothermal chimney. Mar. Ecol. Prog. Ser.508, 67–85.

  44. Fang*, J., Li, C., Zhang, L., Kato, C., and Bartlett, D. G., 2014. Hydrogen isotope fractionation in lipid biosynthesis by the piezophilic bacterium Moritella japonica DSK1.Chemical Geology367, 34–38.

  45. Wang, J., Li, J., Dasgupta, S., Zhang, L., and Fang*, J., 2014. Alterations in membrane lipid composition of piezophilic Gram-positive bacterium Sporosarcina sp. DSK25 at high pressures. Lipids, 49, 347–356.

  46. Zhang, L., Fang*, J., and Joeckel, A.M., 2013. Microbial biomass and community structure in alkaline lakes of theNebraska Sand Hills, USA. Chemical Geology356, 171–180.

  47. Dasgupta, S., Fang*, J., Brake, S. S., Hasiotis, S.T., and Zhang, L., 2013. Stable isotope fractionation in lipids of Euglena-dominated biofilms from an acid mine drainage site: interpretation of environmental conditions, microbial physiology, and biosynthetic pathways. Chemical Geology354, 15–21.

  48. Dasgupta, S., Fang*, J., Li, J., Zhang, L., Wang, J., and Wei, B., 2013. Microeukaryotes in modern acid mine drainage: biodiversity, physiology, and biogeochemistry and clues to the evolution of life and the early Earth environment. Quaternary Science, 33, 68–78.

  49. Li, J., Sun, Y., Fang, J., Chen, S.,P. X., Wu, Z., and Zhou, H., 2013. Aerobic and anaerobic ammonia-oxidizing microorganisms in low-temperature hydrothermal Fe-Si-rich precipitates of the southwestern Pacific Ocean. Geomicrobiology Journal DOI: 10.1080/ 01490451.2013.802397.

  50. Shamik Dasgupta, 方家松;李江涛;张利;王嘉妮;韦兵兵, 2013. 现代酸性矿山废水环境中的真核微生物:生物多样性、生理学、生物地球化学特征及其对古环境和早期生命演化的指示. 第四纪研究, 33(1),  68-78.

  51. Bazylinski, D.A., Williams, T.J., Lefèvre, C.T., Trubitsyn, D., Fang, J., Beveridge, T.J., Moskowitz, B.M., Ward, B., Schübbe, S., Dubbels, B.L., and Simpson, B. 2012. Magnetovibrio blakemorei, gen. nov. sp. nov., a new magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. International Journal of Systematic and Evolutionary Microbiology 63, 1824–1833.

  52. Li, J., Zhou, H., Peng, X., Wu, Z., Chen, S., and Fang, J., 2012. Microbial diversity and biomineralization in low-temperature hydrothermal iron–silica-rich precipitates of the Lau Basin hydrothermal field. FEMS Microbiology Ecology 81, 205–216.

  53. Dasgupta, S., Fang*, J., Brake, S.S., Hasiotis, S.S., and Zhang, L., 2012. Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: Implications for eukaryotic evolution and the early Earth. Chemical Geology306–307, 139–145.

  54. Wu, X., Fang, J., Xiang, M.O., Ling, H.E., Xin-Ting, S., 2011. Driving mechanisms for the DOC increases in surface waters released from Northern Peatlands under global change.Earth Science Frontiers18, 72-78.

  55. Shelton, J.M., Kim, L., Fang, J., Ray, C., and Yan, T., 2011. Assessing the severity of rainfall derived infiltration and inflow and sewer deterioration based on the flux stability of sewage markers. Environmental Science and Technology.45, pp 8683–8690.

  56. Fang, J., and L. Zhang, 2011. Piezophilic bacteria. In: The Encyclopedia of Geobiology, the Springer Encyclopedia of Earth Sciences Series (J. Reitner and V. Thiel, eds.), Springer-Verlag, Heidelberg, Germany.

  57. Fang, J., and L. Zhang, 2011. Genomics, metagenomics, and microbial oceanography—A sea of opportunities. Science China (Earth Sciences)54,473480.

  58. Fang, J., and L. Zhang, 2011. Explore the deep biosphere. Science China (Earth Sciences)54, 1–9.

  59. Fang, J., L. Zhang, and Bazylinski, D.A., 2010. The deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends in Microbiology 18, 413-422.

  60. Fang, J., and Kato, C., 2010. Deep-sea piezophilic bacteria: geomicrobiology and biotechnology. In: Geomicrobiology: Biodiversity and Biotechnology (S. K. Jain, ed.), pp. 47-77. Blackwell Publishing.

  61. Fang, J., and Bazylinski, D. A., 2008. Deep-sea geomicrobiology. In: High-Pressure Microbiology (C. Michiels and D. H. Bartlett, eds.), American Society for Microbiology, Washington, D.C. pp. 237-264.

  62. Fang, J., and Kato, C., 2008. Deep-sea piezophilic bacteria, ocean carbon cycle, and climate change. In: the Encyclopedia of Global Warming and Climate Change (S. George Philander, ed.), Golson Books, Ltd., 2:557-558.

  63. Fang, J., and Kato, C., 2007. FAS or PKS, lipid biosynthesis and stable carbon isotope fractionation in deep-sea piezophilic bacteria. In: Communicating Current Research and Educational Topics and Trends in Applied Microbiology (2007), The Formatex Microbiology Book Series (A. Méndez-Vilas, ed.), Formatex Center, Spain, pp. 190-200.

  64. Fang, J., Gupta, S. D., Hasiotis, S. T., Brake, S. S., and Bazylinski, D. A., 2007. Microbial community structure of a stromatolite from an acid mine drainage system, implications for the role of microeukaryotes in the formation of ancient Fe-rich stromatolites. Chemical Geology243, 191-204.

  65. Fang, J., Lyon, D. Y., Alvarez, P. J. J., Wiesner, M., and Dong, J., 2007. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science and Technology41, 2636-2642.

  66. Fang, J., Arakawa, S., Kato, C., and Schouten, S., 2006. Microbial diversity of cold-seep sediments in Sagami Bay, Japan determined by 16S rDNA and lipid analyses. FEMS Microbiology Ecology57, 429-441.

  67. Fang, J., Uhle, M., Billmark, K., Bartlett, D. H., and Kato, C., 2006. Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica DSK1. Geochimica et Cosmochimica Acta70, 1753-1760.

  68. Fang, J., Chan, C., Joeckel, R. M., Huang, Y., Wang, Y., Bazylinski, D. A., and Moorman, T. B., 2006. Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin, Nebraska. Organic Geochemistry37, 912-931.

  69. Fang, J., Lovanh, N., and Alvarez, P. J., 2004. The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations.  Water Research38, 2529-2536.

  70. Fang, J., Kato, C., Sato, T., Chan, O., Agarkar, N., and McKay, D. S., 2004. Polyunsaturated fatty acids in piezophilic bacteria: biosynthesis or dietary uptake? Comparative Biochemistry and Physiology B137, 455-461.

  71. Fang, J., Chan, O., Kato, C., Sato, T., Peeples, T., and Niggemeyer, K., 2003. Phospholipid fatty acid profiles of piezophilic bacteria from the deep sea. Lipids38, 885-887.

  72. Namocatcat, J. A., Fang, J., and Barcelona, M. J., 2003. Biogeochemical evidence of intrinsic bioremediation in a shallow sand aquifer contaminated with jet fuel hydrocarbons. Journal of Contaminant Hydrology67, 177-194.

  73. Zhang, C. L., Li, Y., Ye, E., Fong, J., Peacock, A., Fang, J., Lovley, D., and White, D.C., 2003. Carbon isotopic signatures of fatty acids in Geobacter metallireducens and Shewanella putreficiens. Chemical Geology195, 17-28.

  74. Fang, J., and Barcelona, M. J., 2003. Coupled oxidation of aromatic hydrocarbons by horseradish peroxidase and hydrogen peroxide. Chemosphere50, 105-109.

  75. Fang, J., Kawamura, K., Ishimura, Y., and Matsumoto, K., 2002. Carbon isotopic composition of fatty acids in the marine aerosols from the western North Pacific: Implication for the source and atmospheric transport.  Environmental Science and Technology36, 2598-2604.

  76. Fang, J., Barcelona, M. J., Abrajano, T. A., Kato, C., and Nogi, Y., 2002. Isotopic composition of fatty acids isolated from the extremely piezophilic bacteria from the Mariana Trench at 11,000 meters. Marine Chemistry80, 1-9.

  77. Fang, J., and Kato, C., 2002. Piezophilic bacteria: taxonomy, diversity, adaptation, and potential biotechnological applications, pp. 47-80. In: Recent Advances in Marine Biotechnology (M. Fingerman, ed.), vol. 8, Science Publishers, Inc. Enfield. 

  78. Zhang, C. L., Ye, Q., Anna-Louise Reysenbach, Götz, D., Peacock, A. White, D. C., Horita, J., Cole, D. R., Fong, J., Pratt, L., Fang, J., and Huang, Y., 2002. Carbon isotopic fractionations associated with thermophilic bacteria Thermotoga maritima and Persephonella marina. Environmental Microbiology4, 58-64.

  79. Fang, J., Barcelona, M. J., and Alvarez, P. J., 2000. Phospholipid patterns of five pseudomonadarchetypes for different aerobic toluene degradation pathways. Bioremediation Journal4, 181-185.

  80. Fang, J., Barcelona, M. J., and Semrau, J., 2000. Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiology Letters189, 67-72.

  81. Fang, J., Barcelona, M. J., and Alvarez, P. J., 2000. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification. Organic Geochemistry31, 881-887.

  82. Fang, J., Barcelona, M. J., and Alvarez, P. J., 2000. Phospholipid compositional changes of five pseudomonad archetypes grown with and without toluene. Applied Microbiology and Biotechnology54, 382-389.

  83. Fang, J., Barcelona, M. J., Krishnamurthy, R. V., and Atekwana, E. A., 2000. Stable carbon isotope biogeochemistry of an aquifer contaminated with fuel hydrocarbons. Applied Geochemistry15, 157-169.

  84. Fang, J., Barcelona, M. J., Kato, C., and Nogi, Y., 2000. Biochemical function and geochemical significance of novel phospholipids isolated from extremely barophilic bacteria from the Mariana Trench at a depth of 11,000 meters. Deep-Sea Research I47, 1173-1182.

  85. Fang, J., and Barcelona, M. J., 1999. Determination of organic acids in ground water by liquid chromatography/ atmospheric pressure chemical ionization/mass spectrometry. Analytical Letters 32, 1459-1473.

  86. Fang, J., and Barcelona, M. J., 1998. Biogeochemical evidence for community changes associated with hydrocarbon contamination in a sand aquifer.  Organic Geochemistry29, 899-907.

  87. Fang, J., and Barcelona, M. J., 1998. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry.  Journal of Microbiological Methods33, 23-35.

  88. Xie, G., Barcelona, M. J., and Fang, J., 1998. Measurement and quantification of TPH by a GC/MS method and comparison with EPA 418.1 and PetroFlag® based on sediment samples from a contaminated site. Analytical Chemistry71, 1899-1904.

  89. Fang, J., Barcelona, M. J., and West, C., 1997. The use of aromatic acids and phospholipid ester-linked fatty acids for delineation of processes affecting an aquifer contaminated with JP-4 fuel, pp. 65-76. In: Molecular Markers in Environmental Geochemistry (R P. Eganhouse, ed.). American Chemical Society, Washington, D.C.  

  90. Mayer, L. M., Chen, Z., Findlay, R. H., Fang, J., Sampson, S., Self, R. F., Jumars, P. A., Quetel, C., and Donard, O. F., 1996. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environmental Science and Technology30, 2641-2645.

  91. Fang, J., and Findlay, R. H., 1996. The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and phospholipids.  Journal of Microbiological Methods27, 63-71.

  92. Yu, Y., Wade, T. L., Fang, J., Brooks, J. M., and McDonald, S., 1995. Production of PAH metabolites in Antarctic fish (Notothenia gibberifrons) dosed with diesel fuel Arctic and its implications to environmental pollution monitoring.  Archive of Environmental Contamination and Toxicology 29, 241-246.

  93. Abrajano, T. A., Murphy, D., Fang, J., and Comet, P. A., 1994. 13C/12C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts. Organic Geochemistry21, 611-618.

  94. Fang, J., Abrajano, T. A., Comet, P. A., Brooks, J. M., and Sassen, R., 1993. Gulf of Mexico hydrocarbon seep communities: IX.  Isotope fractionation during fatty acid biosynthesis of seep mytilids and vestimentiferans: implications for symbiotic processes. Chemistry Geology109, 271-279.

  95. Fang, J., Comet, P. A., Wade, T. L., and Brooks, J. M., 1993. Non-methylene-interrupted fatty acids in the Gulf of Mexico hydrocarbon seep mytilids: occurrence and significance. Comparative Biochemistry and PhysiologyB104, 287-291.

  96. Fang, J., Comet, P. A., Wade, T. L., and Brooks, J. M., 1992. Gulf of Mexico hydrocarbon seep communities: IX.  Sterol biosynthesis of seep mussels and its implications for host-symbiont association. Organic Geochemistry18, 861-868.

  97. Fang, J., Comet, P. A., Brooks, J. M., and Sassen, R., 1992. Stable carbon isotopic composition of lipids of hydrocarbon seep mussels and whitefish, carbon flow implications. Transaction, Gulf Coast Association of Geological Societies41, 467-472.

  98. Fang, J., 1991. Isotopic evidence for petroleum-derived carbonates in the Gulf of Mexico.  Transaction, Gulf Coast Association of Geological Societies40, 276-282.

  99. Fang, J., Sassen, R., Nunn, J., and Roberts., H. H., 1990. Organic geochemistry of sediments of the deep-water Gulf of Mexico. Organic Geochemistry14, 679.

  100. Lin, J. and Fang, J., 1985. Relationship of the characteristics of oilfield brines and distribution of oil and gas fields in eastern China. Minerals and Rocks23, 65-76. (in Chinese).

Book Reviews

Fang, J., 2006. Book review (invited). Energy, Waste and the Environment: a Geochemical Perspective, by R. Gieré and P. Stille. Geoderma 131, 251-253.

Conference Proceedings and Other Technical Publications

Li, B., J. Fang, and F. Zeng, 2009. Changing characteristics of PAH pollutants in aerosols in the Zhongguancun area of Beijing during the 29thOlympic Games. IEEE 2009 Environmental Pollution and Public Health Conference Proceedings. Beijing, China, June 14-16, 2009.

Barcelona, M. J., Lee Major, C., and Fang, J., 2000. MTBE transport and fate under natural gradient tracer test conditions. Remediation of chlorinated and recalcitrant conditions. Battelle 2nd international Conference, May 5-25, 2000, Monterey, CA.

Fang, J., and Barcelona, M. J., 1999. Evolution of aromatic hydrocarbon and metabolic intermediate plumes in a shallow sand aquifer contaminated with jet fuel, pp. 51-56. In: Proceedings of the 2000 Petroleum Hydrocarbons and Other Organic Chemicals in Ground Water: Prevention, Detection, and Remediation, Conference and Exposition, National Ground Water Association – American Petroleum Institute, December 3-6, 1999, Houston, TX.

Fang, J., and Barcelona, M. J., 1997. The analysis of bacterial phospholipids using liquid chromatography/ electrospray/mass spectrometry, pp. 1464. In: Proceedings of the 45th ASMS Conference on Mass Spectrometry and Allied Topics, American Society for Mass Spectrometry, June 1-5, Palm Spring, CA.

Barcelona, M. J., and Fang, J., 1997. Bioremediation of fuel hydrocarbons and chlorinated solvents, pp. 21. In: In Situ and On Site Remediation, Batelle Press, Columbus, OH.

Fang, J., Barcelona, M. J., DuPont, R. A., Sims, R., and Doucette, W., 1996. A critical review of bioremediation of fuels, Chapter 5, Monitoring Intrinsic Bioremediation Processes.  American Petroleum Institute, Washington, D.C.  Final Report.

Barcelona, M. J., Fang, J., and West, C., 1997. Monitoring in-situ bioremediation of fuel hydrocarbons - the use of chemical and biogeochemical markers.  Proceedings of the 1996 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation, Conference and Exposition, National Ground Water Association – American Petroleum Institute, Nov. 13-15, 1996, Houston, TX.

Fang, J., and Barcelona, M. J., 1996. Vertical geochemical profiling of an aquifer contaminated with JP-4 fuel, pp. 289-292. In: The 212th American Chemical Society National Meeting, August 25-29, Orlando, FL.

Barcelona, M. J., Fang, J., and West, C., 1996. Monitoring in-situ bioremediation of fuel hydrocarbons: the use of chemical and biogeochemical markers. Proceedings of the 1996 Petroleum Hydrocarbons and Other Chemicals in Ground Water, Prevention, Detection, and Remediation, Conference and Exposition, National Ground Water Association – American Petroleum Institute, Houston, TX, November 13 – 15, 1996.

Fang, J., Abrajano, T. A., Comet, P. A., Brooks, J. M., and Sassen, R., 1993. Characterization of Gulf of Mexico hydrocarbon seep communities, a molecular approach, pp. 649-656. In: Proceedings of the 16th International Conference on Organic Geochemistry, K. Oygard (ed.), Pergamon Press, London.

Fang, J., Sassen, R., and Chinn, E., 1990. Organic geochemistry of deep-water sediments of the Gulf of Mexico, pp. 225-231. In: Proceedings of the Offshore Technology Conference, OTC 6293, Houston, TX.